## Module 3d: Flow in Pipes

Manning's Equation

## Manning's Equation

- Manning's Equation for velocity and flow applicable to both pipe (closed-conduit) flow and open channel flow.
- It is typically applied only in open-channel flow (fluid in contact with atmosphere).


## Manning's Equation

- For Fluid Velocity in U.S. Customary Units:


## Manning's Equation

Where $\quad \mathrm{V}=$ velocity (ft/sec)
$\mathrm{R}=$ hydraulic radius ( ft )
S = slope of the energy grade line
$\mathrm{n}=$ Manning's roughness coefficient

- For Fluid Velocity in SI Units:

$$
V=\frac{R^{2 / 3} S^{1 / 2}}{n}
$$

Where $\quad \mathrm{V}=$ velocity $(\mathrm{m} / \mathrm{sec})$
$\mathrm{R}=$ hydraulic radius ( m )
$\mathrm{S}=$ slope of the energy grade line
$\mathrm{n}=$ Manning's roughness coefficient

Manning's Equation: n Values

| Surface | Best | Good | Fair | Bad |
| :--- | :---: | :---: | :---: | :---: |
| Uncoated cast-iron pipe | 0.012 | 0.013 | 0.014 | 0.015 |
| Coated cast-iron pipe | 0.011 | 0.012 | 0.013 |  |
| Commercial wrought-iron pipe, black | 0.012 | 0.013 | 0.014 | 0.015 |
| Commercial wrought-iron pipe, <br> galvanized | 0.013 | 0.014 | 0.015 | 0.017 |
| Smooth brass and glass pipe | 0.009 | 0.010 | 0.011 | 0.013 |
| Smooth lockbar and welded "OD" <br> pipe | 0.010 | 0.011 | 0.013 |  |
| Vitrified sewer pipe | $0.010 / 0.011$ | 0.013 | 0.015 | 0.017 |
| Common clay drainage tile | 0.011 | 0.012 | 0.014 | 0.017 |
| Glazed brickwork | 0.011 | 0.012 | 0.013 | 0.015 |
| Brick in cement mortar; brick sewers | 0.012 | 0.013 | 0.015 | 0.017 |

In: Metcalf \& Eddy, Inc. (George Tchobanoglous). Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981. (Table 2-1)

Manning's Equation: n Values

| Surface | Best | Good | Fair | Fair |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Neat cement surfaces | 0.010 | 0.011 | 0.012 | 0.013 |  |  |  |  |  |
| Cement mortar surfaces | 0.011 | 0.012 | 0.013 | 0.015 |  |  |  |  |  |
| Concrete pipe | 0.012 | 0.013 | 0.015 | 0.016 |  |  |  |  |  |
| Wood stave pipe | 0.010 | 0.011 | 0.012 | 0.013 |  |  |  |  |  |
| Plank flumes |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Planed |  |  |  |  |  | 0.010 | 0.012 | 0.013 | 0.014 |
| With battens | 0.011 | 0.013 | 0.014 | 0.015 |  |  |  |  |  |
| Concrete-lined channels | 0.012 | 0.015 | 0.016 | 0.016 |  |  |  |  |  |
| Cement-rubble surface | 0.012 | 0.014 | 0.016 | 0.018 |  |  |  |  |  |
| Dry-rubble surface | 0.025 | 0.020 | 0.025 | 0.030 |  |  |  |  |  |
| Dressed-ashlar surface | 0.013 | 0.014 | 0.033 | 0.035 |  |  |  |  |  |

In: Metcalf \& Eddy, Inc. (George Tchobanoglous). Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981. (Table 2-1)

Manning's Equation: n Values

| Surface | Best | Good | Fair | Bad |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Semicircular metal flumes, smooth | 0.011 | 0.012 | 0.013 | 0.015 |  |  |  |  |  |
| Semicircular metal flumes, corrugated | 0.0225 | 0.025 | 0.0275 | 0.030 |  |  |  |  |  |
| Canals and ditches |  |  |  |  |  |  |  |  |  |
| Earth, straight and uniform |  |  |  |  |  | 0.017 | 0.020 | 0.0225 | 0.025 |
| Rock cuts, smooth and uniform | 0.025 | 0.030 | 0.033 | 0.035 |  |  |  |  |  |
| Rock cuts, jagged and irregular | 0.035 | 0.040 | 0.045 | 0.045 |  |  |  |  |  |
| Dredged-earth channels | 0.025 | 0.0275 | 0.030 | 0.033 |  |  |  |  |  |
| Canals, rough stony beds, weeds <br> on earth banks | 0.025 | 0.030 | 0.035 | 0.040 |  |  |  |  |  |
| Earth bottom, rubble sides | 0.028 | 0.030 | 0.033 | 0.035 |  |  |  |  |  |

In: Metcalf \& Eddy, Inc. (George Tchobanoglous). Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981. (Table 2-1)

Manning's Equation: n Values

| Surface | Best | Good | Fair | Bad |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Natural-stream channels |  |  |  |  |  |
| Clean, straight bank, full stage, no rifts/deep <br> pools | 0.025 | 0.0275 | 0.030 | 0.033 |  |
| Clean, straight bank, full stage, no rifts deep <br> pools, but some weeds/stone | 0.030 | 0.033 | 0.035 | 0.040 |  |
| Winding, some pools and shoals, clean | 0.033 | 0.035 | 0.040 | 0.045 |  |
| Winding, some pools/shoals, clean, lower stages, <br> more ineffective slope/sections | 0.040 | 0.045 | 0.050 | 0.055 |  |
| Winding, some pools/shoals, some weeds/stones | 0.035 | 0.040 | 0.045 | 0.050 |  |
| Winding, some pools/shoals, clean, lower stages, <br> more ineffective slope/sections, stony sections | 0.045 | 0.050 | 0.055 | 0.060 |  |
| Sluggish river reaches, weedy or very deep pools | 0.050 | 0.060 | 0.070 | 0.080 |  |
| Very weedy reaches | 0.075 | 0.100 | 0.125 | 0.150 |  |

In: Metcalf \& Eddy, Inc. (George Tchobanoglous). Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981. (Table 2-1)

Manning's Equation: n Values

| Nature of Surface | Manning's n Range |
| :--- | :--- |
| Concrete Pipe | $0.011-0.013$ |
| Corrugated Metal Pipe | $0.019-0.030$ |
| Vitrified Clay Pipe | $0.012-0.014$ |
| Steel Pipe | $0.009-0.011$ |
| Monolithic Concrete | $0.012-0.017$ |
| Cement Rubble | $0.017-0.025$ |
| Brick | $0.014-0.017$ |
| Laminated Treated Wood | $0.015-0.017$ |
| Open Channels |  |
| Lined with Concrete |  |
| Earth, clean, after weathering |  |

In: Viessman and Hammer. Water Supply and Pollution Control, Sixth Edition. 1998. (Table 6.1) Adapted from: Design Charts for Open-Channel Flow. U.S. Department of Transportation, Federal Highway Administration, Hydraulic Design Series No. 3, U.S. Government Printing Office, Washington, D.C. 1961.

## Manning's Equation

Example:

- What is the velocity of water in a 1 -inch diameter pipe that has a slope of $2 \%$, assuming that the pipe is flowing
full? full?

The roughness coefficient for the pipe $=\mathrm{n}=0.013$.
S = $2 \%=0.02$
Calculate hydraulic radius, R
R (pipe full) $=\mathrm{D} / 4=[(1 \mathrm{inch}) /(12 \mathrm{in} / \mathrm{ft})] / 4=0.021 \mathrm{ft}$

- Substituting into Manning's Equation:

$$
\begin{gathered}
V=\frac{1.49}{0.013}(0.021 \mathrm{ft})^{2 / 3}(0.02)^{1 / 2} \\
V=114.6(0.076)(0.1414) \\
\mathrm{V}=1.23 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

Manning's Equation: n Values

| Nature of Surface | Manning's n Range |
| :--- | :---: |
| Open Channels | $0.025-0.030$ |
| Earth, with grass and some weeds | $0.035-0.040$ |
| Excavated in rock, smooth | $0.040-0.045$ |
| Excavated in rock, jagged and irregular | $0.012-0.017$ |
| Natural Stream Channels | $0.028-0.033$ |
| No boulders or brush | $0.035-0.050$ |
| Dense growth of weeds | $0.050-0.070$ |
| Bottom of cobbles with large boulders | $0.025-0.030$ |
| Earth, with grass and some weeds | $0.035-0.040$ |
| Excavated in rock, smooth | $0.040-0.045$ |
| Excavated in rock, jagged and irregular |  |

In: Viessman and Hammer. Water Supply and Pollution Control, Sixth Edition. 1998. (Table 6.1) Adapted from: Design Charts for Open-Channel Flow. U.S. Department of Transportation, Federal Highway Administration, Hydraulic Design Series No. 3, U.S Government Printing Office, Washington, D.C. 1961.

## Manning's Equation

Diameter of a Pipe Flowing Full Using Manning's Equation for Velocity

$$
\begin{aligned}
& V=\frac{1.49}{n} R^{2 / 3} S^{1 / 2} \\
& A=\frac{\pi}{4} D^{2} \\
& P=\pi D \\
& R=\frac{A}{P}=\frac{\frac{\pi}{4} D^{2}}{\pi D}=\frac{D}{4}
\end{aligned}
$$

## Manning's Equation

Diameter of a Pipe Flowing Full Using Manning's Equation for Velocity

$$
\begin{aligned}
& V=\frac{1.49}{n}\left(\frac{D}{4}\right)^{2 / 3} S^{1 / 2} \\
& \frac{n V}{1.49 S^{1 / 2}}=\left(\frac{D}{4}\right)^{2 / 3} \\
& \left(\frac{n V}{1.49 S^{1 / 2}}\right)^{3 / 2}=\frac{D}{4} \\
& 4\left(\frac{n V}{1.49 S^{1 / 2}}\right)^{3 / 2}=D
\end{aligned}
$$

## Manning's Equation

- For Fluid Flow in U.S. Customary Units:

$$
Q=\frac{1.486 A R^{2 / 3} S^{1 / 2}}{n}
$$

Where $\quad \mathrm{Q}=$ flow ( $\mathrm{ft} 3 / \mathrm{sec}$ )
A = cross-sectional area of flow ( $\mathrm{ft}^{2}$ )
$\mathrm{R}=$ hydraulic radius ( ft )
$\mathrm{S}=$ slope of the energy grade line
$\mathrm{n}=$ Manning's roughness coefficient

## Manning's Equation

- For Fluid Flow in SI Units:

$$
Q=\frac{A R^{2 / 3} S^{1 / 2}}{n}
$$

Where $\quad \mathrm{Q}=$ flow $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$
A = cross-sectional area of flow ( $\mathrm{m}^{2}$ )
$\mathrm{R}=$ hydraulic radius ( m )
$\mathrm{S}=$ slope of the energy grade line
$\mathrm{n}=$ Manning's roughness coefficient

## Manning's Equation

Example:

- Determine the discharge of a trapezoidal channel having a brick bottom and grassy sides, with the following dimensions: depth $=6 \mathrm{ft}$, bottom width $=12 \mathrm{ft}$, top width $=18 \mathrm{ft}$. Assume $\mathrm{S}=0.002$.

- For the rectangular area with the brick bottom: $\mathrm{n}=0.017$
To use Manning's, need A and R:
A = (Depth of Flow)(Bottom Width of Channel)
A $=(6 \mathrm{ft})(12 \mathrm{ft})=72 \mathrm{ft}^{2}$
$\mathrm{P}=$ wetted perimeter $=12 \mathrm{ft}$
$\mathrm{R}=\mathrm{A} / \mathrm{P}=72 \mathrm{ft}^{2} / 12 \mathrm{ft}=6 \mathrm{ft}$


## Manning's Equation

- Substituting into Manning's:

$$
\begin{aligned}
& Q=\frac{1.49}{0.017}\left(72 \mathrm{ft}^{2}\right)(6 \mathrm{ft})^{2 / 3}(0.002)^{1 / 2} \\
& \mathrm{Q}=930.75 \mathrm{ft}^{3} / \mathrm{sec} \\
& \mathrm{Q}=931 \mathrm{ft}^{3} / \mathrm{sec}
\end{aligned}
$$

- For the two triangular areas with grass-lined sides: $\mathrm{n}=0.025$

To use Manning's, need A and R for one side:
$\mathrm{A}=0.5(6 \mathrm{ft})(3 \mathrm{ft})=9 \mathrm{ft}^{2}$

## Manning's Equation

Total Flow = Flow from Rectangular Section + 2(Flow from One Triangular Section)

Total Flow = 931 cfs $+2(29.3 \mathrm{cfs})=989.6 \mathrm{cfs}$

## Manning's Equation

- To use Manning's, need A and R for one side:
$\mathrm{P}=$ hypotenuse of right triangle
$\mathrm{P}^{2}=(\text { Depth of Flow })^{2}+(\text { Width of One Side })^{2}$
$\mathrm{P}^{2}=(6 \mathrm{ft})^{2}+(3 \mathrm{ft})^{2}$
$\mathrm{P}^{2}=36 \mathrm{ft}^{2}+9 \mathrm{ft}^{2}=45 \mathrm{ft}^{2}$
$\mathrm{P}=6.71 \mathrm{ft}$
$\mathrm{R}=\mathrm{A} / \mathrm{P}=9 \mathrm{ft} 2 / 6.71 \mathrm{ft})=1.35 \mathrm{ft}$
- Substituting into Manning's for one side of the channel:

$$
\begin{aligned}
& Q=\frac{1.49}{0.025}\left(9 \mathrm{ft}^{2}\right)(1.35 f t)^{2 / 3}(0.002)^{1 / 2} \\
& \mathrm{Q}=29.3 \mathrm{ft}^{3} / \mathrm{sec}
\end{aligned}
$$

Manning's Equation

- Also can use nomographs to get solution.

From: Warren Viessman, Jr. and Mark Hammer. Water Supply and Pollution Control Sixth Edition. Addison-Wesley. 1998.


Manning's Equation

- Also can use nomographs to get solution.


From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering:
Collection and Pumping of Wastewater. McGraw-Hill. Inc. 1981.

Manning's Equation

- Also can use nomographs to get solution.


From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981

Manning's Equation

- Also can use nomographs to get solution.


From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering:
Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981


From: Metcalf and Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981.

## Manning's Equation

Recall that the diameter of a pipe flowing full using Manning's equation :

$$
\left(\frac{4^{5 / 3} n Q}{1.49 \pi S^{1 / 2}}\right)^{3 / 8}=D
$$

## Manning's Equation

- Substituting

$$
\begin{aligned}
& D=\left(\frac{4^{5 / 3}(0.013)\left(39.4 \mathrm{ft}^{3} / \mathrm{sec}\right)}{1.49 \pi(0.005)^{1 / 2}}\right)^{3 / 8} \\
& D=2.8 f t=33.6 \mathrm{in}
\end{aligned}
$$

- Want smallest commercial pipe size whose ID is greater than or equal to 33.6 in. Use a $36-\mathrm{in}$. pipe.

Or can be solved by using the nomograms.

- To use SI unit nomograms, need to convert flow rate to SI units: $\mathrm{Q}=39.4 \mathrm{ft}^{3} / \mathrm{sec}(0.3048 \mathrm{~m} / \mathrm{ft})^{3}=1.116 \mathrm{~m}^{3} / \mathrm{sec}=1.12 \mathrm{~m}^{3} / \mathrm{sec}$


## Manning's Equation

Example:

- Given a 20 -inch concrete conduit with a roughness coefficient of $\mathrm{n}=0.013, \mathrm{~S}=0.005$ and a discharge capacity of 9.85 cfs , what diameter pipe is required to quadruple the capacity.
- Use Manning's equation to solve for pipe diameter:

$$
D=\left(\frac{4^{5 / 3} n Q}{1.49 \pi S^{1 / 2}}\right)^{3 / 8}
$$

- To quadruple capacity, $\mathrm{Q}=39.4 \mathrm{ft}^{3} / \mathrm{sec}$.


From nomogram, D should be slightly greater than 1050 mm (42 inches). Based on the nomogram, use a 48 -in. diameter pipe

## Manning's Equation

Example:
Determine the head loss in a $46-\mathrm{cm}$ concrete pipe with an average velocity of $1.0 \mathrm{~m} / \mathrm{sec}$ and a length of 30 m .

For a pipe flowing full: $R=\frac{D}{4}=\frac{0.46 \mathrm{~m}}{4}=0.115 \mathrm{~m}$

By definition: Slope of energy line $=$ Head Loss/Length of Pipe
Or: Head Loss = $\mathrm{h}_{\mathrm{L}}=$ (Slope)(Pipe Length)

- Let $\mathrm{n}=0.012$ (concrete pipe)

$$
\begin{gathered}
V=\frac{1}{n} R^{2 / 3} S^{1 / 2} \\
S^{1 / 2}=\frac{n V}{R^{2 / 3}} \\
S=\left(\frac{n V}{R^{2 / 3}}\right)^{2}
\end{gathered}
$$

## Manning's Equation

- Substituting:

$$
\begin{aligned}
& S=\left(\frac{0.012(1 \mathrm{~m} / \mathrm{sec})}{0.15^{2 / 3}}\right)^{2} \\
& S=0.0018
\end{aligned}
$$

- Head Loss = Slope(Pipe Length)

$$
\mathrm{h}_{\mathrm{L}}=0.0018(30 \mathrm{~m})=0.054 \mathrm{~m}
$$

- Also can use nomogram to get the slope. For D $=460 \mathrm{~mm}$ and V $=1 \mathrm{~m} / \mathrm{sec}$. Slope $=0.0028$ Head Loss = Slope(Pipe Length) $\mathrm{h}_{\mathrm{L}}=0.0028(30 \mathrm{~m})=0.084 \mathrm{~m}$
- Both solution methods show that the head loss is less than 0.10 m .

Manning's Equation

- For $\mathrm{D}=460 \mathrm{~mm}$ (18 in.) and $\mathrm{V}=1 \mathrm{~m} / \mathrm{sec}$ (3.3 fps).

Slope $=0.0028$
Head Loss =
Slope(Pipe Length)
$\mathrm{h}_{\mathrm{L}}=0.0028(30 \mathrm{~m})$
$=0.084 \mathrm{~m}$


